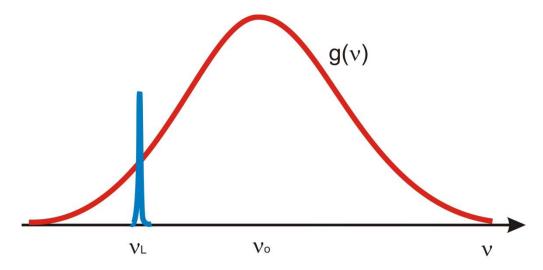
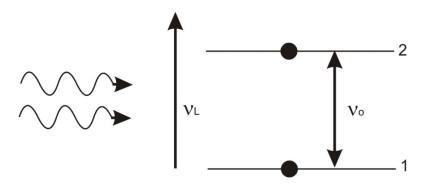
4061- Lecture Five – Gain Coefficient for a Laser

2 Level Atoms Stimulated by Monochromatic Source



- v_L is the frequency of the monochromatic source

2 Level Atoms Exposed to Monochromatic Source



Rate for Stimulated Emission

$$R_{21} = B_{21} \rho_{\nu}$$

Rate for Absorption

$$R_{12} = B_{12}\rho_{\nu}$$

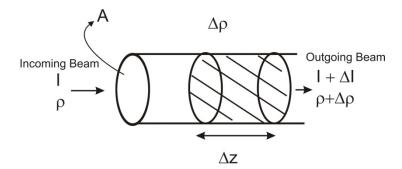
Photons Added to the Beam/ Unit Time = n_2R_{21} Photons Removed from the Beam/ Unit Time = n_1R_{12} Change in photons in Beam/ Unit Time = n_2R_{21} - n_1R_{12} = Δn R

- Δn is the difference in population density Note: $R = R_{21} = R_{12}$ Note: We can neglect spontaneous emission as only as small fraction of events will produce photons along the same path as the beam.

Rate of Change of Energy Density

$$\Delta \rho / \Delta t = \Delta n R h v$$

Here hv is the energy of the photon



- Δz is the thickness of the gain medium
- The incident beam will transit through the gain medium in time Δt

$$\Delta t = \Delta z/c$$

Increase in energy density

$$\Delta \rho = \Delta n R h \frac{\Delta z}{c}$$

Since $\Delta \rho = \Delta I/c$ and since $R = B = A_{21}c^3/8\pi hv^3$

$$\begin{split} \Delta I &= A_{21} \; (c^2/8\pi v^2) \; g(\nu) \; I \; \Delta n \; \Delta z \\ \lim_{z \to 0} \; \Delta I / \; \Delta z \; \boldsymbol{\rightarrow} \; dI/dz = \frac{\lambda^2}{8\pi} \; A_{21} \; g(\nu) \; \Delta n \; I = \gamma(\nu) \; I \end{split}$$

Here $\gamma(v)$ is the gain coefficient which is the fractional change in intensity per unit propagation distance in units of m⁻¹

$$\gamma(v) = \frac{\lambda^2}{8\pi} A_{21} g(v) \Delta n = (1/\Delta z)(dI/I)$$

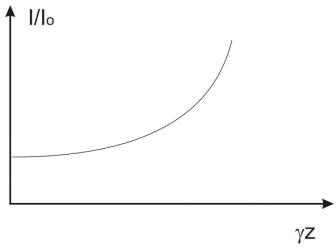
Interpretation

 γ has to be positive for amplification \Rightarrow $n_2 > n_1$ Need a population inversion and this requires a non-equilibrium distribution Amplification (Lasers) require a pump to create non-equilibrium distribution Desirable to work at peak of gain curve Need large A_{21} for increasing $\gamma(\nu)$ Shorter wavelength results in smaller γ Assume γ is positive and independent of z,

$$\frac{dI}{I} = \gamma(v)dz$$

$$\int_{I_o}^{I} \frac{dI}{I} = \int_{0}^{z} \gamma(v)dz$$

$$I = I_o e^{\gamma(v)z}$$



- Indefinite increase is unphysical
- In practice Δn decreases and limits increase
- A pump is needed to counteract decrease in Δn

Define Gain Cross Section

$$\gamma(\nu) = \frac{\lambda^2}{8\pi} \, A_{21} \; g(\nu) \; \Delta n = \sigma(\nu) \; \Delta n$$

- $\sigma(v)$ is the gain cross section
- contains single atom properties
- is the effective absorbing area of atom (can be larger than area of atom)
- units of m²

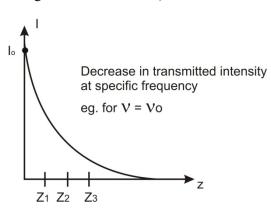
Attenuation

Assume $n_2 << n_1$

- note that $\gamma(v)$ is negative
- with $n_2 = 0$, define

$$\alpha(v) = n_1 \sigma_{abs}(v)$$

- $\sigma_{abs}(v)$ is the absorption coefficient



Beers Law

$$I(z) = I_o e^{-\alpha z}$$

αz is the optical depth

