Phys 4061/5061 – Tutorial Six

Details Pertaining to laboratory experiments covered in this tutorial can be found in the lab manual under the following sections

1. Laser Linewidth \rightarrow Faraday Isolator

Polarization

- degree of freedom along horizontal for molecular chains in sheet polarizer
 - O horizontally polarized light is absorbed
 - vertically polarized light is transmitted

 $I_{trans}=I_o \ / \ 2$

• independent of polarizer orientation Axis (y)

 $E_{y} = E_{o} \cos\theta$ $I_{T} \alpha E_{o}^{2} \cos^{2}\theta = I_{o} \cos^{2}\theta$ $<\cos^{2}\theta > = \frac{1}{2}$

Circular Polarization

- combine 2 perpendicular E fields with 90° phase shift
- cannot distinguish circular and random using linear polarizer
- Definition of RHC and LHC --> direction of Spin of E field when light approaches
 - \bigcirc RHC clockwise spin
 - O LHC counter-clockwise spin

Quarter Wave Plate

Spinning Polarizer Test

• can distinguish between linear and circular

 $\lambda/4$ Plate

 $\delta = 90^{\circ}$ = phase shift between E field components parallel and perpendicular to optical axis of plate

Path difference

 $p = \frac{2\pi}{\lambda}\delta = d(n_{\perp} - n_{\parallel}) = \frac{\lambda}{4}$ Where d is the plate thickness and n_{\perp} and n_{\parallel} are indices perpendicular and parallel to axis

a (angle of Optical Axis)	Input	Output
0	X	X (Lin Polarized – No effect)
90	Х	X (Lin Polarized – No effect)
45	Х	RHC
-45	Х	LHC
α	Х	Elliptical

 $\lambda/2$ Plate

Looks like two $\lambda/4$ plates

 $\delta = 180^{\circ}$ = phase shift between E field components parallel and perpendicular to optical axis of plate Path Difference

 $p = \frac{2\pi}{\lambda}\delta = d(n_{\perp} - n_{\parallel}) = \frac{\lambda}{2}$

α	Input	Output
0	X	X
90	X	X
45	X	Y
-45	Х	Y
α	X	Linear, Rotated by 2α
α	RH Elliptical	LH Elliptical

Cube Beam Splitter and $\lambda/2$ Plate

use half wave plate to control relative power in two directions ۲

Mirror Reversal

- changes RHC to LHC
- does not change angular momentum L

Contrast with Time Reversal

• what goes in must come out – different from mirror reversal

